Neutrino mixing

Can $\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau$?

If this happens:

- neutrinos have mass
- physics beyond the (perturbative) Standard Model participates

Outline:

- description/review of mixing phenomenology
- possible experimental signatures
- short review of existing experimental results
Analogy with $K^0 \leftrightarrow \bar{K}^0$ mixing

We produce flavor eigenstates...

\[
\begin{align*}
\text{strong interaction produces a } K^0 \\
\text{weak interaction produces a } \nu_\mu
\end{align*}
\]

…but the mass eigenstates are what propagate “sensibly” without mixing:

\[
\begin{align*}
|K_S(\tau)\rangle &= |K_S(0)\rangle e^{-\Gamma_S \tau} e^{-im_s c^2 \tau / \hbar} \\
|K_L(\tau)\rangle &= |K_L(0)\rangle e^{-\Gamma_L \tau} e^{-im_L c^2 \tau / \hbar} \\
|v_1(\tau)\rangle &= |v_1(0)\rangle e^{-im_1 c^2 \tau / \hbar} \\
|v_2(\tau)\rangle &= |v_2(0)\rangle e^{-im_2 c^2 \tau / \hbar} \\
|v_3(\tau)\rangle &= |v_3(0)\rangle e^{-im_3 c^2 \tau / \hbar}
\end{align*}
\]
Analogy with $K^0 \leftrightarrow \bar{K}^0$ mixing

We know $K_L \neq K^0$, etc. Perhaps $\nu_1 \neq \nu_e$ or $\nu_2 \neq \nu_\mu$ or $\nu_3 \neq \nu_\tau$?

Rewrite the production eigenstates as linear combinations of mass eigenstates:

$$
\begin{pmatrix}
K^0 \\
\bar{K}^0
\end{pmatrix} = U_{2\times2} \begin{pmatrix}
K_S \\
K_L
\end{pmatrix} \quad \begin{pmatrix}
K_S \\
K_L
\end{pmatrix} = (U_{2\times2}^T)^* \begin{pmatrix}
K^0 \\
\bar{K}^0
\end{pmatrix}
$$

$$
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} = U \begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix} \quad \begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix} = (U^T)^* \begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
$$

U is the Maki-Nakagawa-Sakata matrix.
Maki-Nakagawa-Sakata mixing matrix

Parameterize mixing with three angles and one phase:

\[
U = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{+i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[\begin{align*}
\nu_\mu & \leftrightarrow \nu_\tau \\
\nu_e & \leftrightarrow \nu_\tau \\
\nu_e & \leftrightarrow \nu_\mu
\end{align*}\]

\[c_{12} \equiv \cos\theta_{12}, \quad s_{12} \equiv \sin\theta_{12} \ldots \quad \delta \neq 0: \text{CP violation}\]

This form is convenient if only two neutrino species mix. (CP violation requires that all three mix.)
Analogy with $K^0 \leftrightarrow \bar{K}^0$ mixing

\[K^0 \leftrightarrow \bar{K}^0 \]

\[\nu_\mu \leftrightarrow \nu_e \]

\[\begin{array}{c}
K^0 \\
ds \\
w \\
d \\
K^0 \\
u, c, t \\
u, c, t \\
w \\
K^0 \\
\end{array} \]

\[|K(\tau = 0)\rangle = |K^0\rangle \sim |K_S\rangle + |K_L\rangle \] (maximal mixing!)

\[|K(\tau)\rangle = |K_S\rangle e^{-\Gamma_s \tau} e^{-im_{S}c^2\tau/\hbar} + |K_L\rangle e^{-\Gamma_{L} \tau} e^{-im_{L}c^2\tau/\hbar} \]

\[\sim |K_S\rangle e^{-\Gamma_s \tau} + |K_L\rangle e^{-\Gamma_{L} \tau} e^{-i\Delta m c^2\tau/\hbar} \] ($\Delta m = m_L - m_S$)

K_L phase rotates (relative to K_S phase) $\sim 30^\circ$ per 10^{-10} sec.

Recall: $|K^0\rangle \sim |K_S\rangle + |K_L\rangle$ and $|\bar{K}^0\rangle \sim |K_S\rangle - |K_L\rangle$.
Analogy with $K^0 \leftrightarrow \bar{K}^0$ mixing

$v_\mu \leftrightarrow v_e$

v_1, v_3 phases rotate relative to v_2 phase if masses are unequal.
Highly contrived example:

\[m_1 = 0.1 \text{ eV}, \ m_2 = 0.3 \text{ eV}, \ m_3 = 0.4 \text{ eV} \]
\[\theta_{12} = 10^\circ, \ \theta_{13} = 20^\circ, \ \theta_{23} = 30^\circ, \ \delta = 0^\circ \]

Radius of circle = |amplitude|; line indicates \(Arg(\text{amplitude}) \)

\[P = 8.73 \times 10^{-34} \quad P = 1. \quad P = 1.1 \times 10^{-32} \]

\[\langle \nu \mu | \nu (0) \rangle = 1 \]

\[n_1, \quad m_1 = 0.1 \text{ eV} \quad q_{\theta 2} = 10. \text{ deg} \]
\[n_2, \quad m_2 = 0.3 \text{ eV} \quad q_{\theta 3} = 20. \text{ deg} \]
\[n_3, \quad m_3 = 0.4 \text{ eV} \quad q_{\theta 3} = 30. \text{ deg} \]

\[\langle \nu_1 | \nu (0) \rangle = -0.32 \quad \langle \nu_2 | \nu (0) \rangle = 0.82 \quad \langle \nu_3 | \nu (0) \rangle = 0.47 \]
\[\frac{d\phi_1}{d\tau} = \frac{m_1 c^2}{\hbar} = 8.7^\circ/10^{-15} \text{ sec}; \quad \frac{d\phi_2}{d\tau} = 26.1^\circ/10^{-15} \text{ sec}; \quad \frac{d\phi_3}{d\tau} = 34.8^\circ/10^{-15} \text{ sec} \]

\[t = 1.65 \times 10^{-15} \text{ sec} \]

\[\langle \nu_\mu | \nu(t) \rangle \neq 1 \]

\[
\begin{array}{ccc}
\nu_e & | P = 0.0341 \rangle & \nu_m & | P = 0.961 \rangle & \nu_t & | P = 0.00445 \rangle \\
\end{array}
\]

\[
\begin{array}{ccc}
\nu_1 & m_1 = 0.1 \text{ eV} & \nu_2 & m_2 = 0.3 \text{ eV} & \nu_3 & m_3 = 0.4 \text{ eV} \\
q_{12} = 10. \text{ deg} & q_{13} = 20. \text{ deg} & q_{23} = 30. \text{ deg} \\
\end{array}
\]

\(\nu_1, \nu_2, \nu_3 \) phases have changed: heavier species phase-rotate more rapidly.
Mathematica animation for

\[m_1 = 0.1 \text{ eV}, \quad m_2 = 0.3 \text{ eV}, \quad m_3 = 0.4 \text{ eV} \]
\[\theta_{12} = 10^\circ, \quad \theta_{13} = 20^\circ, \quad \theta_{23} = 30^\circ, \quad \delta = 0^\circ \]

(http://web.hep.uiuc.edu/home/g-gollin/neutrinos/amplitudes1.nb)
ν oscillations in a beam with energy E_ν ...

$x = \text{distance from production} \quad t = \text{time since production}$

\begin{align*}
x_\mu & \equiv (\vec{x}, ct) \quad \text{rest frame: } (0, c\tau) \\
p_\mu & \equiv (\vec{p}, E_\nu / c) \quad \text{rest frame: } (0, mc) \\
p_\mu x^\mu & = -m_i c^2 \tau \quad \text{all frames (Lorentz scalar)} \\
& = px - E_\nu t \quad \text{lab frame}
\end{align*}

\begin{align*}
p & = \sqrt{(E_\nu / c)^2 - (m_i c)^2} \approx E_\nu / c - m_i^2 c^3 / (2E_\nu) ; \quad x \approx ct
\end{align*}

\begin{align*}
\therefore & \quad e^{-im_i c^2 \tau / \hbar} = e^{i(px - E_\nu t / \hbar)} \approx e^{-im_i^2 c^3 x / (2E_\nu \hbar)}
\end{align*}

\begin{align*}
|\nu_i (\tau)\rangle = |\nu_i (0)\rangle e^{-im_i c^2 \tau / \hbar} & \quad \rightarrow \quad |\nu_i (x)\rangle = |\nu_i (0)\rangle e^{-im_i^2 c^3 x / (2E_\nu \hbar)}
\end{align*}
ν_μ oscillations in a beam...

\[|\nu(x=0)\rangle = |\nu_\mu\rangle = U_{21}^\ast |\nu_1\rangle + U_{22}^\ast |\nu_2\rangle + U_{23}^\ast |\nu_3\rangle \]

\[|\nu(x)\rangle \sim U_{21}^\ast |\nu_1\rangle + U_{22}^\ast |\nu_2\rangle e^{-i\Delta m_{21}^2 c^3 x/(2E\hbar)} + U_{23}^\ast |\nu_3\rangle e^{-i\Delta m_{31}^2 c^3 x/(2E\hbar)} \]

\[\Delta m_{21}^2 = m_2^2 - m_1^2 \quad \Delta m_{31}^2 = m_3^2 - m_1^2 \quad \text{(factored out } e^{-im_1^2 c^3 x/(2E\hbar)} \text{).} \]

\[\frac{d\phi_{21}}{dx} = \frac{\Delta m_{21}^2 c^3}{2E\hbar} \approx \frac{\Delta m_{21}^2}{E} \cdot (145^\circ \text{ per km}) \text{ for } \Delta m_{21}^2 \text{ in (eV)}^2, \ E \text{ in GeV} \]

Relative phases of ν_1, ν_2, ν_3 coefficients change: $\nu_\mu \rightarrow \text{other stuff}$
Mathematica animation for

\[\Delta m_{21}^2 = 0.3 \text{ eV}^2, \quad \Delta m_{31}^2 = 0.6 \text{ eV}^2 \]
\[\theta_{12} = 5^\circ, \quad \theta_{13} = 10^\circ, \quad \theta_{23} = 15^\circ, \quad \delta = 0^\circ \]

(http://web.hep.uiuc.edu/home/g-gollin/neutrinos/amplitudes2.nb)
Two-flavor mixing

Results are often analyzed with the simplifying assumption that only two of the three ν species mix.

For example: $\nu_e \leftrightarrow \nu_\mu$...

$$|\nu(x = 0)\rangle = |\nu_\mu\rangle = -\sin \theta_{12} |\nu_1\rangle + \cos \theta_{12} |\nu_2\rangle$$

$$|\nu(x)\rangle = -\sin \theta_{12} |\nu_1\rangle + \cos \theta_{12} |\nu_2\rangle e^{-i\Delta m^2_{12}c^3x/(2Eh)}$$

$$P(\nu_\mu \rightarrow \nu_e ; x) = \left| \langle \nu_e | \nu(x) \rangle \right|^2$$

$$= \left| \langle \cos \theta_{12} \nu_1 + \sin \theta_{12} \nu_2 | -\sin \theta_{12} \nu_1 + \cos \theta_{12} e^{-i\Delta m^2_{12}c^3x/(2Eh)} \nu_2 \rangle \right|^2$$

$$= (\cos \theta_{12} \sin \theta_{12})^2 \left| 1 - e^{-i\Delta m^2_{12}c^3x/(2Eh)} \right|^2$$
Two-flavor mixing

\[P(\nu_\mu \rightarrow \nu_e; x) = (\cos \theta_{12} \sin \theta_{12})^2 \left| 1 - e^{-i\Delta m^2 c^3 x / (2E\hbar)} \right|^2 \]

\[= \frac{1}{2} \sin^2 (2\theta_{12}) \left[1 - \cos \left(\frac{\Delta m^2 c^3 x}{2E\hbar} \right) \right] \]

\[= \sin^2 (2\theta_{12}) \sin^2 \left(\frac{\Delta m^2 c^3 x}{4E\hbar} \right) \]

\[\approx \sin^2 (2\theta_{12}) \sin^2 \left(1.27 \Delta m^2 \frac{x}{E} \right) \]

units: \(\Delta m^2 \) in eV\(^2\), \(x \) in km, \(E \) in GeV.

\[P(\nu_e \rightarrow \nu_e; x) = 1 - P(\nu_\mu \rightarrow \nu_e; x) \]
Mathematica animation for

\[\Delta m_{21}^2 = 0.3 \text{ eV}^2 \]

\[\theta_{12} = 15^\circ, \ \theta_{13} = 0^\circ, \ \theta_{23} = 0^\circ, \ \delta = 0^\circ \]

(http://web.hep.uiuc.edu/home/g-gollin/neutrinos/amplitudes3.nb)
Those confusing plots for two-flavor mixing...

\[P(\nu_\mu \rightarrow \nu_e; L) \approx \sin^2(2\theta_{12}) \sin^2\left(1.27\Delta m_{21}^2 \frac{L}{E}\right) \]

A search experiment sets a limit (or measures!!) the mixing probability \(P \), but little else, at the present time.

Green curve is contour of fixed probability to observe oscillation \(L \) for an event is uncertain due to length of \(\pi \rightarrow \mu \) decay/drift region.

Large \(\Delta m^2 \): uncertainty in \(L/E \) corresponds to several oscillations.

\(P \) determined by experiment is an average over several oscillations and is insensitive to \(\Delta m^2 \) in this case...
More on those confusing plots...

\[P\left(\nu_\mu \rightarrow \nu_e ; L\right) \approx \sin^2 \left(2\theta_{12}\right) \sin^2 \left(1.27\Delta m^2_{21} \frac{L}{E}\right) \]

Medium \(\Delta m^2\):

- uncertainty in \(L/E\) corresponds to a fraction of an oscillation.
- \(1.27\Delta m^2 L/E \sim \pi/2\) is possible for some of the detected events

\(P\) (limit) determined by experiment corresponds to smallest \(\sin^2(2\theta)\) when \(1.27\Delta m^2 L/E = \pi/2\).
Even more on those confusing plots...

\[P(\nu_\mu \rightarrow \nu_e; L) \approx \sin^2 (2\theta_{12}) \sin^2 \left(1.27 \Delta m_{21}^2 \frac{L}{E} \right) \]

Small \(\Delta m^2 \):

- uncertainty in \(L/E \) corresponds to a fraction of an oscillation.
- \(\sin^2(1.27\Delta m^2 L/E) < 1 \) since \(L/E \) is always too small

\(P \) (limit) determined by experiment corresponds to larger and larger \(\sin^2(2\theta) \) as \(\Delta m^2 L/E \) shrinks.

(\textbf{Green} curve is contour of fixed probability to observe oscillation)
What could be happening?

• Nothing
• Two- or three-flavor oscillations $\nu_e \leftrightarrow \nu_\mu \leftrightarrow \nu_\tau$
• Oscillations into "sterile" neutrinos (ν’s just "disappear")
• Neutrinos decay (into what??)
• Matter-enhanced (Mikheyev-Smirnov-Wolfenstein mechanism) oscillations
• Extra dimensions
• Something else
Is anything happening?

1. Atmospheric neutrinos
 - cosmic ray interactions in the atmosphere produce ν’s through decays of π, K, μ.
 - expect ν_μ/ν_e ratio for upwards- and downwards-going neutrinos to be equal if no oscillations.
 - expect ν_μ/ν_e ratio for upwards-going neutrinos to shrink relative to downwards-going if ν_μ oscillates into ν_τ or ν_sterile but ν_e doesn’t.
 - Super-Kamikande finds ν_μ(up)/ν_μ(down) = 0.52 ± 0.05 but ν_e(up)/ν_e(down) ~ 1.
 - suggestive of ν_μ → ν_τ oscillations
Is anything happening?

2. Solar neutrinos...
Is anything happening?

... Solar neutrinos...

Is anything happening?

... Solar neutrinos...

Not enough neutrinos.

MSW mechanism?

(more on this next week)

<table>
<thead>
<tr>
<th></th>
<th>$^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$ (SNU)</th>
<th>$^{71}\text{Ga} \rightarrow ^{74}\text{Ge}$ (SNU)</th>
<th>$^8\text{B}\nu$ flux (109cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake</td>
<td>2.56 ± 0.16 ± 0.16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CLEVELAND 98</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GALEX</td>
<td></td>
<td>77.5 ± 6.2±4.3</td>
<td>—</td>
</tr>
<tr>
<td>HAMPEL 99</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>SAGE</td>
<td></td>
<td>67.2±7.2±3.5</td>
<td>—</td>
</tr>
<tr>
<td>ABDURASHI...99B</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Kamiokande</td>
<td></td>
<td>2.80 ± 0.19 ± 0.33</td>
<td>—</td>
</tr>
<tr>
<td>FUKUKDA 96</td>
<td></td>
<td>2.436±0.055±0.055</td>
<td>—</td>
</tr>
<tr>
<td>Super-Kamiokande</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>FUKUKDA 99</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>BAHCALL 98C</td>
<td>7.7±1.2</td>
<td>129±8</td>
<td>5.15(1.00±0.19)</td>
</tr>
<tr>
<td>BRUN 98</td>
<td>7.18</td>
<td>127.2</td>
<td>4.82</td>
</tr>
<tr>
<td>DAR 96</td>
<td>4.1 ± 1.2</td>
<td>115 ± 6</td>
<td>2.49</td>
</tr>
<tr>
<td>BAHCALL 95B</td>
<td>9.3±1.2</td>
<td>137±8</td>
<td>6.6(1.00±0.14)</td>
</tr>
<tr>
<td>TURCK-CHEIZE 93B</td>
<td>6.4 ± 1.4</td>
<td>123 ± 7</td>
<td>4.4 ± 1.1</td>
</tr>
<tr>
<td>BAHCALL 92</td>
<td>8.0 ± 3.0</td>
<td>132±17</td>
<td>5.69(1.00±0.43)</td>
</tr>
<tr>
<td>BAHCALL 88</td>
<td>7.9±2.6</td>
<td>132±20</td>
<td>5.8(1.00±0.37)</td>
</tr>
<tr>
<td>TURCK-CHEIZE 88</td>
<td>5.8 ± 1.3</td>
<td>125 ± 5</td>
<td>3.8(1.00±0.29)</td>
</tr>
<tr>
<td>FILIPPONE 83</td>
<td>5.6</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>BAHCALL 82</td>
<td>7.6±3.3</td>
<td>106±13</td>
<td>5.6</td>
</tr>
<tr>
<td>FILIPPONE 82</td>
<td>7.0 ± 3.0</td>
<td>111 ± 13</td>
<td>4.8</td>
</tr>
<tr>
<td>FOWLER 82</td>
<td>6.9 ± 1.0</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>BAHCALL 80</td>
<td>7.3</td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

1 SNU (Solar Neutrino Unit) = 10$^{-38}$ captures per atom per second.

“3σ” errors.
Is anything happening?

3. LSND result

- 1 mA beam of 800 MeV (kinetic) energy protons produces π^+, μ^+ which decay in flight (most π^-, μ^- captured in shielding)
- $\overline{\nu}_e / \overline{\nu}_\mu \approx 4 \times 10^{-4}$ in beam
- Look for $\overline{\nu}_e$ appearing in liquid scintillator volume
- find 82.8 ± 23.7 excess $\overline{\nu}_e$ events
- also see weaker evidence for $\nu_\mu \rightarrow \nu_e$
Is anything happening?

...LSND result

BNL E776

LSND has the only appearance result.
Next week

More about the existing results and planned experiments.