dE/dx and Particle Identification
Inside L-Tracker

Matthew McHugh
The Point

- Differentiate between particles based on their relative energy losses
- Particles providing false positive results
 - Simulated particles have 105 MeV/c
- Electron, Pion, Muon
Method of Tracking

• Monte Carlo tracking system
 – ‘Swim’ particles through tracker
• Fourth Order Runge-Kutta
 – Accurate, coinciding paths
 – 1 picosecond intervals
• Coordinate transformation
 – Particle within tracker vane
What it looks like
Stopping Power, dE/dx

• Approximate material as homogenous
• Bethe-Bloch for heavy particles
 – Ionization and atomic excitation
• Bremsstrahlung for electrons
 – Radiative losses dominate
• Energy recalculated at each step
Molière and Landau

- **Molière**
 - Multiple Coulomb scattering

- **Landau distribution**
 - Energy loss stochastic, fluctuations
 - Little likelihood of large energy loss
 - Generally, $\Delta E \ll E_0$
dE at Fixed Theta

- 200 simulations per particle per angle
- Tightly packed distributions
 - Easily discernable peaks
- Overlap of distributions
- Energy loss ratios

<table>
<thead>
<tr>
<th>Theta</th>
<th>$<\Delta E_\pi/\Delta E_e>$</th>
<th>$<\Delta E_\mu/\Delta E_e>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0.8886</td>
<td>0.5991</td>
</tr>
<tr>
<td>80</td>
<td>0.8865</td>
<td>0.6208</td>
</tr>
<tr>
<td>90</td>
<td>0.8106</td>
<td>0.6368</td>
</tr>
<tr>
<td>105</td>
<td>0.7290</td>
<td>0.5521</td>
</tr>
</tbody>
</table>
dE, Theta Spectrum

- dE discernable across broad spectrum
 - Muons almost out of picture
- Inconsistencies
 - ‘Skimming’
Timing

- First and last hits in tracking chamber
- At given theta, difference of ~2 ns
So What?

- Ratios of energy loss tell us approximate ratio of dE/dx
- Ratio is indicative of relative signal strengths in drift chambers
- Timing difference between signals to be used to determining velocity/momentum differences, information about motion
Points of Error and Next Step

• This is a baseline study
 – Approximation of tracker material
 – Step sizes, skimming

• Next
 – Take time data of hits on individual tracker sections and calorimeter
 – Allow for more freedom in particle propagation
Conclusion

• Study of energy loss can narrow scope of data considered, increase confidence level of detection of conversion e^-

• More sophisticated studies should be done in the future to more accurately model dE/dx
 – Useful tool on data analysis

• Time resolution should be about one nanosecond